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4. Combine numerical relaxation with a finite element minimization of
the total energy in the system. The ultimate challenge is to determine the
effective energy of the variational problem: Minimize

F(u) =

∫

Ω

W (Du) dx

from a joint relaxation and minimization in the sense that one minimizes

Fh(u) =

∫

Ω

W rc
h (DU) dx

where U ∈ S1 is a finite element function (e.g. continuous and affine on the
elements of a regular triangulation).
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Rate-independent damage at large strains

Tomáš Roub́ıček

(joint work with A. Mielke)

We consider damage in the context of nonlinear elasticity at large strains, which
is certainly a relevant concept especially because damaged materials may allow
indeed for very large deformations. On the other hand, only materials with quasi-
convex stored energy of a polynomial growth p > 3, as Ogden’s type materials,
are analyzed. Moreover, we consider damage as a rate-independent process, as
standardly applied to concrete, filled polymers, or filled rubbers. Being rate-
independent, it is necessarily an activated process, i.e. to trigger a damage the
mechanical stress must achieve a certain activation threshold. We consider the
isotropic damage that can be described by a scalar parameter z ∈ [0, 1] and neglect
any other rate dependent processes like viscosity and inertia. In accord to some
engineering literature and for mathematical reasons, our model involves also the
gradient of damage, expressing certain nonlocality in the sense that damage of a
particular spot is to some extent influenced by its surrounding.

At a fixed time, the state of the system is considered as q = (u, ζ) where
u : Ω → R

3 is the deformation considered on the reference body configuration
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Ω ⊂ R
3, and ζ : Ω → [0, 1] is a distribution of damage; ζ(x) = 1 means 100%

quality of the material, 0 means that the material is completely damaged at the
current point x ∈ Ω, and 0 < ζ(x) < 1 means that some portion of material is
already damaged due to, e.g., microcracks or microvoids.

The stored energy density ϕ(x, F, z) is then a function of deformation gradient
F = ∇u and the damage variable z:

ϕ(F, z) := ϕ0(F ) + zϕ1(F ).(1)

Dissipative mechanisms are routinely described by a (pseudo)potential of dissipa-
tive forces, here denoted by R, as a function of the rate of q = q(t). The only
dissipation of energy we consider is due to the damage and, on the microscopical
level, it is related with irreversible structural changes of the material starting with
microcracks and ending by its complete disintegration. We describe it by a single
phenomenological parameter d > 0 having the meaning of a specific energy (per
volume, i.e. in physical units Jm−3 =Pa) needed for complete damage of the unit
volume of the material, i.e. the energy needed to switch ζ(x) from 1 to 0.

The classical formulation of the quasi-static problem consists in the balance
of Piola-Kirchoff stress and the activated evolution of the damage parameter de-
scribed by a complementarity problem:

−div
(
ϕ′

0(∇u) + ζϕ′
1(∇u)

)
= 0,(2a)

∂ζ

∂t
≤ 0,(2b)

ζϕ1(∇u) − rζ ≤ d+ κ div
(
|∇ζ|r−2∇ζ

)
,(2c)

∂ζ

∂t

(
d− ζϕ1(∇u) + κ div

(
|∇ζ|r−2∇ζ

)
+ rζ

)
= 0(2d)

on the reference domain Ω, here κ > 0 is a so-called factor of influence of damage
and r > 3, and rζ ∈ ∂χ[0,+∞)(ζ) is an additional force balancing the natural
constraint ζ ≥ 0; the notation χ[0,+∞) stands for the indicator function of [0,+∞).

This system is completed by time-dependent hard-device loading, i.e. time-
dependent Dirichlet boundary conditions u|Γ = wD(t) are prescribed on some part
Γ of the boundary ∂Ω while zero normal stress is considered on the rest. Due to
the damage gradient term, some boundary conditions (here of Neumann’s type)
should be considered also for ζ.

The energetics involves the overall Gibbs’ stored energy

G(t, u, ζ): =





∫

Ω

ϕ
(
∇u(x), ζ(x)

)
+
κ

r
|∇ζ(x)|r dx if u|Γ =wD(t), ζ ≥ 0 a.e.,

+∞ otherwise,
(3)

and the dissipation rate

R(q̇) :=

∫

Ω

̺(ζ̇(x)
)
dx where ̺(ż) :=

{
−dż if ż ≤ 0,

+∞ otherwise,
(4)
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here q̇ = (ẏ; ζ̇) stands for the rate of q. The energetic solution q : [0, T ] → Q :=
W 1,p(Ω; R3)×L1(Ω) to (2) on a fixed time interval [0, T ] is required to satisfy the
stability condition

∀q̃ ∈ Q : G
(
t, q(t)

)
≤ G(t, q̃) +R

(
q̃ − q(t)

)
,(5)

for all 0 ≤ t ≤ T , and the energy equality

G(t, q(t)) + VarR(q; s, t) = G(s, q(s)) +

∫ t

s

P (θ, q(θ)) dθ(6)

with P (t, q) ≡ P (t, u, ζ) :=

∫

Ω

ϕ′
F

(
∇u(x), ζ(x)

)
:∇

∂u
D

∂t
(t, x) dx.

for any 0 ≤ s < t ≤ T where the total variation VarR(q; s, t) := sup
∑j

i=1R(q(ti)−
q(ti−1)) with the supremum taken over all j ∈ N and over all partitions of [s, t] in
the form s = t0 < t1 < ... < tj−1 < tj = t, and eventually q is required also to
satisfy a prescribed initial condition q(0) = 0.

Main assumptions are p-polynomial coercivity and growth both for ϕ0 and ϕ1

which are to be polyconvex, the p-growth for ϕ′
0 and ϕ′

1, and qualification of the
Dirichlet loading wD ∈ W 1,1(0, T ;W 1,∞(Ω; R3)). The coercivity of ϕ0 means that
only an incomplete damage is considered now.

Existence of an energetic solution q∈B([0, T ];W 1,p(Ω; R3))×(BV([0, T ];L1(Ω))
∩L∞(W 1,r(Ω))) with “B(·)” and “BV(·)”denoting the spaces of bounded and
bounded-variation functions, respectively, is proved by a convergence of approx-
imate solutions qτ with qτ |(τ(k−1),τk] = qk

τ solving the following recursive mini-
mization problem

{
Minimize G(tkτ , q) +R(q − qk−1

τ )

subject to q ≡ (u, ζ)∈Q;
(7)

existence of qk
τ is by the direct method. Of course, we put q0τ = q0 a given

initial condition. This suggests, after a further spatial discretization, a constructive
computational strategy.

A-priori estimates that can be obtained are the following:
∥∥uτ

∥∥
L∞(0,T ;W 1,p(Ω;R3))

≤ C1, and(8a)
∥∥ζτ
∥∥

BV([0,T ];L1(Ω))∩ L∞(0,T ;W 1,r(Ω))
≤ C2,(8b)

∥∥t 7→ Gτ (t, qτ (t))
∥∥

BV([0,T ])
≤ C3.(8c)

with Gτ defined like in (3) but with a piecewise constant approximation of wD.
Moreover, a discrete stability and two-sided energy estimate can be derived.

Convergence can then be shown by the methodology developed in [1, 2], i.e. se-
lecting a subsequence converging weakly* in the topologies indicated in (8) and,
by Banach-space-valued Helly’s selection principle, even pointwise in time for all
quantities under the BV-estimates in (8). Then a limit passage in the discrete
stability and two-sided energy estimate goes through, using various sophisticated
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techniques, e.g. Tikhonov’s (non-sequential) compactness of a product of a count-
able number of copies of a (weakly compact) ball in W 1,p(Ω; R3) or an approxi-
mation of Lebesgue integrals by Riemann’s sums.

The contribution is based on [3] where several generalizations are considered:
ζ may act nonlinearly in (1), beside the hard-loading device also a prescribed-
trajectory impact of an ideally rigid body is considered, and eventually some ideas
are outlined for a complete damage.
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Analysis of damage models

Gilles A. Francfort

Rate independence is a shared feature of many constitutive behaviors for solids,
from brittle fracture, to associated elasto-plasticity, damage or phase transforma-
tion. The material is assumed to be described by a free energy and a dissipation
potential. In the case of brittle damage, the free energy W (F, z) is a function
whose first entry is the gradient of the deformation u, a R

N -valued vector, and
whose second entry is an internal variable (in [0, 1]) that measures the state of
damage in the material, so that W ց with z. The dissipation potential D, associ-
ated to the rate of change of z, is chosen such that D(ż(t)) ≥ 0, D is convex with
D(0) = 0. This ensures the positivity of the mechanical dissipation. In all that
follows we take

D(s) =

{
ks, s ≥ 0

∞, else,

the last condition translating the irreversibility of the process.
Consider a domain Ω ∈ R

N , occupied by such a material, clamped throughout
its boundary, and submitted to, say, time dependent body loads f(t). If we assume
that inertia is negligible, then the material will follow a quasi-static evolution.


